Two new species of the genus Euphlyctis (Anura, Ranidae) from southwestern India, revealed by molecular and morphological comparisons

S. Hareesh Joshy *, Mohammad Shafiqul Alam **, Atsushi Kurabayashi **, Masayuki Sumida ** \& Mitsuru Kuramoto ***
*Rondano Blodiversity Research Laboratorys St. Aloysus College, Mangalore 575003 , Karnataka, Inda
** Instutute for Amphbiban Biology, Graduate Schoof of Science, Hiroshima University, Higashihitoshıma, Hiroshına 739-8526, Japan

3-6-15 Hikariganka, Munakata, Fukuoka 811-3403, Japan

Abstract

Two new frog species of the genus Euphlyctis, which were shown to be two distinct taxa by mitochondrial DNA analyses, are described from Karnataka State, southwestern India. On the molecular phylogenetic tree, the first new species appears as a sister group with respect to E. hexadactylus. The second new species forms a group with E. cyanophlyctis. The first species differs from E. hexadactylus in having a distinctly smaller snout-vent length and dark brown bold markings on the dorsum, a smaller head, shorter hindlimbs and wider eyelids, relative to snout-vent length. The second species differs from the close relative E. cyanophlyctis in having shorter fingers. Its advertisement calls are composed of trills that are much longer in duration, are composed of more numerous pulses, and have a lower dominant frequency than those of \mathbf{E}. cyanophlyctis and \mathbf{E}. hexadactylus. Morphological comparisons between the four species ate presented. The present study reveals hitherto overlooked cryptic biodiversity in the genus Euphlyctis.

Introduction

 phlucha (Schneider, 1799) from Iran, Afghatostan, Pakistan. Nepal, Inda, Sn Lanka, Malaya whd Vietnam, E chonhergn (Peters. 1863) from Satud Arabia and Yemen, E.ghoshu Chanda, 1991) from Mantpu, Indic. and E he wadu fha (Lesson, 1834) from India, Sri Lanka and
 E he wade in has are known to occur in southwestern Indal (Bust, 2001: Danil 5 s, 2005) These speces are aquatic of semo-aquatic frogs with wade toe webbing that usually live hadtsubmerged in water, or on the water edge of ponds, wetlands. paddy fiolds and ditches.

In 2003, we collected small frogs of the genus Euphlyctis from Mangalore, together with E hexadacty has and E cyanophiyctis. At first, we considered the small ones as juvemules of E, he cadactrius However, mtDNA data reveated that the small frogs were distinctly different from E hexadactylus as well as from E cyanophlycus (Kurabayashi et al., 2005: Alam et al, 2008). We collected similar small Euphlychs frogs from Mudıgere in the Western Ghats in 2007, and the mtDNA data, described in the present study, clanfied that the frogs from Mudigere differed from those of Mangalore. Alam et al. (2008) also demonstrated the presence of another cryptic Euphlyctis speces from Bangladesh by mtDNA analysis, but the two new Indian taxa here treated were clearly different from that from Bangladesh. These latter two Indian frogs are described below as two new species.

Recently, many new amuran species have been described from southwestern Indra, including the Western Ghats (eg., Dubors et al., 2001, Buju \& Bossuxt, 2003, 2005, 2006, Kuramoto \& Joshy, 2003; Buu et al, 2007: Kuramoto et al , 2007) This indicates that the wealth of amphibuan biodiversity in this area is beyond the expectation generally recogmzed. The present study and other recently oblamed evidence sheds light on the cryptic biodiversity in the small and rather unnoticed genus Euphlyctrs:

Material and methods

Euphiris frogs were collected from Adyar ($12^{\circ} 52^{2} \mathrm{~N}, 74^{\circ} 55^{\prime} \mathrm{E}$, altitude 1 nm) and Bajpe ($12^{\circ} 58^{\circ} \mathrm{N}, 74^{\circ} 50^{\circ} \mathrm{E}$, altitude ca 70 m) in Mangalore, Dakshın Kannad District of Karnataka, and from Mudgere ($13^{\circ} 07^{\prime} \mathrm{N}, 75^{\circ} 31^{\prime} \mathrm{E}$, alltude cat. 1020 nt), Chikumagalur District of Karnataka, during the ramy season (May to July), from 2003 to 2008. To elucidate the genetic divergence and phylogenetic relationship of the Euphichis laxa oceuring in southwestern Karnataka, partial mtDNA portons corresponding to 12 S and 16 S rRNA genes were analyzed for 37 Euphherts samples molvong thove of E he waduch lia from Adyar and E ciamophite the from Bajpe, Padil (Mangalore), Kamoor (Dakshin Kannad District) and Madikert (Kodagu District).

In the present study, the mtDNA fragments were newly amplified and sequenced for 14 specmens and the data of the remanng 27 taxa were oblaned from our prevous studies (ALAM et al . 2008). The DNA amplification and sequence strateges followed the procedares ats m the prevous paper. The resultant sequences of each 12 S and 16 S rRNA gene were sntally aligned using ClustalX 183 (THOMPYov et all.. 1997), the mital 12 S and $16 \$$ rRA algmment data contaned 566 and 570 nucleoude sites, respectively From these digntment datd, the genetic divergence (uncollected p balue) botween taxd was calculated To pertorm sophaticated phylogeneac andyses, gaps and ambiguots alignment stes were exiluded from the inulul algnments using Gblucks 091 b (CAsircisata, 2000) To cheek whether I2S and I6S rRNA datat could be submited to combmed analyses. a permutation homolog? test (Farkis et al, 1995) Was conducted using PAUP* 4.10 b (Swoflord, 2001) (P - 0 [24) Thers, the tho gene dat werb comedmated The concatenated digmment data contaned a total of 976 nucleoude stes. 192 of whtch were parsmomously antormatise Phylogeneta analyas based on the coneatenated data were conducted
sing maximum likelihood (ML) and Bayesian inference (BI) methods. In these analyses, cervarya fumbohoms (accesston no. AY158705; Liv et al, 2005) and Limnonectes thanensis (AY974191, Nif et al., unpublished) were used as outgroups. For ML and BI aalyscs, appropriate substitution models were estimated using Akarke information ateria implemented in Modeltest 3.7 (Posada \& Crandall, 1998), and a general me-reversible substitution model with gamma population and proportion of invariable tes sub-models (GTR $+\mathbf{G}+\mathrm{I}$) was chosen. ML analysis was performed using PAUP* vonparametric bootstrap (BP) values under ML were calculated wath 300 replicates. BI nalysis was performed using MrBayes 3.1.2 (Ronqu ist \& Hlelsfnbrek, 2003). The folwing settings were also used for the BI analysis number of Markov chan Monte Carlo enerations $=15 \times 10^{3}$ and samping frequency $=10$ The bunn-in size was determmed by hecking convergences of \log likelhood ($\ln L$) values, and the first $l \times 10^{5}$ generations were scarded. The statistical support of the resultant Bl tree was evaluated by Bayesian posternor robabitities (BPP)

Measwements were recorded for snout-vent length (SV L), head tength (HL), head width HW), snout to nostril distance ($\mathrm{S}-\mathrm{N}$), inter-nostril distance ($\mathrm{N}-\mathrm{N}$), nostral to eye distance V-E), eyc diameter (ED), inter-orbital distance (E-E), eyelid width (ELW), tympanum lameter (TD), hand Iength (HAL), no. 1 to no. 4 finger length (F1-F4), hindlimb length 11LL), femur length (FEL), tibia length (TIL), foot length (FOL), and no 1 to no 5 toe ingth (T1-T5). For detals of the method of measurements see Kt ramoto \& Joshy (2006) ad Kuramoto el al. (2007) Juvenle specimens were excluded from measurements. For 20rphological comparison, we measured six preserved specimens of E hevaductivis from 1dyar, Mangalore and 19 specimens of E. cumophy\& tes from Mangalore, Karnoor, Bhatkal, . dlagmı. Mudigere and Madikert, all in Karnataka State (see fig I in Kuramotoetal , 2007), .eposited on the Rondano Brodwersity Restarch Laboratory. Si. Aloyslus College. Examined peemens are listed below except for those of the new specres. Discriminant analyses were erformed by SPSS (150 J) statisties software (SPSS Japan. Inc.) wing the measurements vithout any transformation.
 ' adult \& 1. Bhatkal: RBRL. 00062601-00062603, 00062605-00062607 (6 adult \&). Karnoor रBRL 01080508, 04071139,04071140 (2 adult 5. 1 adtlt 9). Madiketi: RBRL 03060702 1 duult 오) Mudgere RBRL 05070921,05070922 (1 adult d. 1 adult q) Padsl RBRL 13052303 (1 adult \%) Talagum RBRL $01081113,01081114,01081118(3 \mathrm{adult}$ क)

Euphfrets be waduethlus Adydr RBRL 0306060t, 05071901-08071903, 07072801. 17072802 (5 adult of. I adult $\%$).

The adyurtsement calls there recorded in Mudgere on $29 \mathrm{~J} . \mathrm{J}_{3} 2007 \mathrm{dt}$ an an temperature If $23.22^{\circ} \mathrm{C}$ and on 27 J uly 2008 at $210^{\circ} \mathrm{C}$ usang an MDrecorder (Sony M2-B10) The recorded alk were analyaed by Avisolt-SASLab Light soltware (Ausolt Bioncousus)

The type specmens were deposited an the Nataral History Collecturas of the Bombaty Vattalal Hotory Soctely (BNHS), and the other specimens were stored in the Rondano Bodiversity Research Laboratory, St. Aloysius College (RBRI.).

Fig 1. Phslogenetic felutionships of Euphloctas taxd from Karnataka. India, inferred from mitochondral I 2 S and 165 S rR NA gene data Maximum likelhhuod tree $(-\ln L-3356$ 93) s represented here Bdyestan analysis reconstructed the same iree topology. The numbers on the nodes are BP in ML and BPP in BI Three haplutype groups are shown by abbrevalions, hpEA, hpEB and hpEC Fseld numbers of samples and collecting stes are shown Asterisks mdicate that the samples were used in andlyses by Kurabayashl et al. (2005) and Alam et al (2008)

Results

Bused on the 12S and 16 S rRNA gene sequences, the Indan Euphthers specimens consisted of five major haplotype groups (fig. 1). Two of the five groups corresponded to E comophho $t s$ and E. hevalus h lus, and the others were temporanly named as hpEA. hpEB and hpEC In the ML tree (fig. 1), the hpEB group formed a group with E \& 1 ahophistis and this clade was strongly supported by statistical salues (BP - 100: BPP - 100) The hpEA and hpEC groups formed a group, and they became a soter taxon with respect to E heradact how, but statistal support for this relatonship was not high (BP - 68. BPP 85) The same relationships as for the five mayor Etyhh cil's taxd were also reconsiructed in our Bayestan analysis. Furthermore. the present result was partally congruent with the result of prewous studies. Kifabayasht et al. (2005) showed that mall-sized Euphhous specimens (hpEA)
rom Mangalore (Adyar and Bajpe) differed genetically from E, hexaducty hus, and ALAm et al 2008) found that one specimen from Mudigere (hpEC) was closely related to the hpEA roup, but there was a degree of genetic divergence between the groups.

According to Aisam et al (2008), the average sequence divergences between E. heradacWhs and hpEA (Ehex-Inl and Ehex-In2 in Alam et al., 2008) were $11.9{ }^{\circ}$ oand 6.3° "for 12 S nd $16 S$ rRNA genes, respectively Because these values were larger than those previously sported from intraspecfic sequence companisons in mantellids (Vmees et al., 2005) and outh American bufonds and hylds (Fouquit et al.. 2007), Alam et al (2008) concluded lat the two haplotype groups should be separated taxonomically as drfferent species. When e recalculated the average sequence divengence between these taxa with the present addition1 material, the values were 130% and 9.1% for 12 S and 16 S rRNA genes, respectively. The pecimen from Mudigere collected in 2003 (hpEC. Ehex-[n3 in Alam et al., 2008) was also sparated clearly from E hexadactysus (153° c and 91% for 12 S and 168), but the sequence invergence values (50° u and 23°) did not support the distanct separation between the hpEC nd thpEA groups. Only one specimen with the hpEC haplotype has been found so far, and his specimen was apparently subadult Thus, more specimens are needed before discussing its axonomic status.

The most remarkable finding in the present study was that the five specmens from Nudigere (hpEB) collected in 2007 formed a sister group to that of E cyanophlycus (fig. 1). -Tolecular divergence between hpEB and E cuanophlyctis was 16.4 ", for 12 S and 107% for $.6 \$ \mathrm{rRNA}$ genes. As in the case between hpEA and E. hevaductylus, these values were large nough to regard the hpEB group as a distinct spectes from E cuanephlyy tis.

Our molecular analyses have revealed the occurrence of two undescribed spectes mo outhwestern part of Karaataka. As discussed in the later section, the two haplotype (hpEA ind hpEB) groups were morphologically distanct from E hexaduty hus and E cyanophlyens, espectively, and from each other These indicate that the two haplotype groups are reproducively distinct, and are described below as new species.

Taxonomy

Euphlyctis aloysii sp. nov.

1pEA group in fig. 1 and in Kurabayashi et al. (2005).
Ehex-In2 group in Alam et al. (2008)
Deughoss Small Luphivim species. SVL from 318 to 452 mm in females. It differs from E. he waiacil its in its datinctly smaller body saze, having fout large elliptical dark markings on the dorsum, smaller head, shorter hundlumbs, and water eyelids. reldive to SVL. The presenee of large dorsal markungs and thon mud-dor at stripe readily datingushes this pecies from I gomoph/rifs The eyes atd tymparnms atre maller, and femur and tibat are shorter, relative to SVL, in E. alowsn than in E cymophlyatis

Fig 2 Holotype of Euphiticts adonsm sp nov (BNIIS 5123, \& from Bajpe) Dorsal vrew (A), wentral wew (B) posterior aspeet of thigh (C). and fool (D) Lower part of abdomen was cht open for sexing, and the opeming is seen in B

Holotipe BNHS 5123 (fig. 2). female, SVL 404 mm , collected in Bajpe, Mangalore, on 21 July 2007.

Pdratyper BNHS 5124, \%, S L L 38.6 mm , Adyar, Mangalore, 6 June 2003 BNIIS 5125, 9. SVL 37 I mm. Bajpe Mangalore, 21 Jul\} 2007 BNHS 5126. \&. SVL 372 mm, Adyalr. Mangalore, 28 July 2007
Other spetmens equmtiked RBRL 03052501. 05071904. two adult ©. Adyar. RBRL 0407060104070603 , 06072003 06072004. 06072404, 07072101. 07072104-07072113. 07072115,18 adult 9 , Bajpe
Descriphen of holothpe batamemamin man + Vomerne teeth round, stuated neat antertor end of upper jaw; tongue tip bifurcated.

Fig 3 Eaphlicis aloywisp nov RBRL 06072004 (A) and RBRL 06072404 (B), showing coloration in life.

Head small, wider than long (HL 12.4, HW 13.1); snout slightly pointed; nostril nearer to tip of snout than to cye (S-N 2.9, N-E 3 1), Joreal region concave, canthus rostralis blunt; internarial distance larger than inter-orbital, the latter smaller than eyeld width ($\mathrm{N}-\mathrm{N} 2.4$, E-E 1.4, ELW 3.3); tympanum large, about 75^{\prime} w of eye diameter (ED 4.2, TD 3 3)

Finger free, finger tup small, slightly ponted; first finger longer than sccond (F1 7.0, F2 4 5); subartucular tubercle moderate, finger lengths F2 $<F 4<F 1<F 3$ (F3 7.2, F44.7).

Distal part of thigh thick; tibio-tarsal articulation slightly apart when legs folded at right angle to body axis, foot length larger than femur length and slightly larger than ubia length (FOL 19.1, FEL 18.4. TIL 190): toe tip smatl, slightly pointed; subarticular tubercle moderate, toe lengths T) $<\mathrm{T} 2<\mathrm{T} 3<\mathrm{T} 5<\mathrm{T} 4$ (T1 71, T299. T3 11 8, T4 15.6. T5 13 4): web nearly reaching toe tip and sharply melsed (fig. 2D); mner metatarsal tubencle indistunct.

Supra-tympanic fold thin, forming granular row at posterior part of tympanum, not reacheng arm base, numerous small round nidges on dorsum, no ridges on flank and thigh, underside smooth, except a par of rows conststing of a series of small dermal projections from the anterior edge of forelimbs to groin

In preservatue, dark brown dowe with at thin matdorsal stripe, smatl black spots from beneath eye to forelimb base: large dark brown elliptical or round markings on dorsal side of thigh and shank, wide whte longitudmal stripe on sides from above forchmb to groin; three detrk brown longitudual stripes and intervening two whic stripes on postertor side of thigh (fig. 2(), thin pale stripe on outcredge of shank, dark streak from ankle to outer edge of foot; ventral side white; wregular dark hoe pattern on underside of thigh (fig, 2B), wregular dark markings on underside of shank.
Coter in iffe Dorsum light brown with a thin greensh mid-dorsal stripe, and green patihes over upper jath and from cychd to shoulder, two par's of rather conspeuous large elliphical marhings on dorsum (fig 3) At might. the dorsum was darker, and green color and dorad markings became inconspicuous.

Vanatzon - Measurements for 24 female specimens are given in tab. 1 Of 24 specimens, 22 had a thin mid-dorsal stripe (fig. 3B), one had a relatively thick mid-dorsal stripe (fig. 3A), and only one (paratype BNHS 5124) lacked mid-dorsal stripe. Irregular line pattern on underside of thigh and shank differed from specimen to specimen, and extended to lower part of abdomen in some specimens. Paratype BNHS 5124 showed a distinct black dot line system composed of black horny tubercles; a curved dot line between anterior edge of foreleg, a pair of dot lines on both sides of the throat, a pair of dotted lines from the anterior part of the arm base, circling the upper edge of arm base, extending toward groin, then toward back; a pair of faint longitudinal black dotted lines on both sides of the venter A similar dotted line system was reported un E cyanophlycus from Sia Lanka (Dutta \& Manamendra-Arachchi, 1996), and one of the authors (MK) observed it in a preserved specimen of E headactylus from Malabar (deposited in Musćum national d'listore naturelle, Paris MNHN 1292.9, SVL 692 mm) These systems apparently represent the latera! line sy stem (see Dubors \& OhLrr. 2001).

We did not observe juventes of E. hevaductulus The juveniles were described as "beautifully striped" (Bollenger, 1890), "have bars or spots of dark green and black on the back" (Daniet, 2002), or "more strikmgly colored with patches of green and black scattered over the olive-black back" (Daniels, 2005). These descriptions fit the coloration of E aloysit fanly well. Although precise comparisons wat for future studies, there may be a possibality that E aloysu has been confused with juveniles of E he vadactiplus in some cases. The juveniles of Hoplobatrachus ngerinus have a beautuful green and black dorsal paitern, but they can be readily distungushable from E. aloysi by the presence of many longitudmal dermal ndges on the back

Our specimens were all females, and male sexual characters are unknown
Ecology Females had mature ova in the ovaries. The ova are pigmented and ca. I mm in diameter Since the gravid females were collected from late May to late July, spawning may begin in early August. During July, in the middle of the rdiny season in Karnataka, we heard advertisement calls of E heradactiths Fejervarya caperwta Kuramoto et al., 2007 and Hylarana auranitaca (Boulenger, 1904) in Adyar and those of Fejervary cuperara, F sainadras (Dubons et al, 2001). Microhlo ormata (Dumeral \& Bibron, 1841) and Polipedates mutulutu (Gray, 1830) m Batpe. but we could not hear the calls of E alorsu Our specmens ($n-24$) were composed of females only The reason why males did not appear durmg our collecting was not clear
Distribtion Presently known only from Adyar and Bajpe in Mangalore. The hpEC group from Mudigere, whech apparently relates to E. alopsif from external morphology and molecular analyss may suggest the presence of a montane subspecies.
Errmulogy. This species and the College where the man part of this study was carried out, were both named in honor of Aloysus Gonzaga (1568 1591) Aloy sus was a Prmee in Italy who entered a Jesuit order and died serving the plague-stricken people of Rome
DNA seghetter duta for holeripe. Accession numbers are AB273171 and AB272606 for mitochondrial I2S and 165 rRNA genes. respectwely $607-02 \mathrm{in}$ fig 11

g. 4 Holatype of Euphinem muthgere sp not (BNHS 5127. 6 from Mudigere) Dorsal wan (A). ventrd] vea (B), postenor aspect of thigh (C), and foot (D) Opening for remoting lissue for DNA analysis is seen in \mathbf{B}

Euphlyctis mudigere sp, nov.

(fig. 4-6)
pEB group in fig 1
כugnows Small Eiupho shs species with SVL from 28.1 to 348 mm in males. It dilfers from heradut, lus and E whow in hav ing a smple stripe pattern on the posterior side of the bagh and a blunily meised web. The fingers, relathe to SVL. are shorter than in E. cyanoph/ycis The advertisement calls are | 7 , in mean duraton, and consist of about 16 pukes w th the 'ommant frequency band al about 15 kHz The calls difer from those of E crumophik trs nd E hevadatrha call length longer, more numerous pules in a call and lower dommant iequency band

Fig. 5 Euphlvefis mudigere sp nov Paratype (BNIIS 5130) (A) and RBRI. 08072504 (B) showng coloration in life.

Holotype BNIIS 5127 (fig 4), male, SVL: 311 mm, collected in Mudigere, on 29 July 2007.
Purutypes. - BNHS 5128, ₹, SVL 29.2 mm, Mudigere, 29 July 2007. BNHS 5129, ©, SVL 281 mm , Mudigere, 29 July 2007. BNHS 5130 (fig. 5A), ס, SVL 32.7 mm , Mudigere, 29 July 2007.

Other specmens evammed
RBRL 07072905,08072504 (fig 5B), 08072505 , three 8 . Mudigere.
Descripton of hototype (measurements in mnz). Vomerine teeth round, situated near anterior end of upper jaw; tongue tip bifurcated.

Head small, wider than long (HL 10 3. HW 11 3): snout slightly ponted: nostril nearer to cye than to tip of snout (S-N $30, \mathrm{~N}-\mathrm{E} 2$ 6): loreal region concave, canthus rostralis blunt. internarial distance latger than inter-orbital, the latter smaller than eyeld width ($\mathrm{N}-\mathrm{N} 21$, E-E 1.2. ELW 2.3); ty mpanum large, about 85" of eye darmeter (ED 38. TD 3 3)

Fingers free, gradually taperng to pointed tip: first finger larger than second (F1 46 . F2 39), subarticalar tubercle small; finger lengths F4 < F2 $<$ F1 $<$ F3 (F3 5.6, F4, 3.5). No thickening of the first finger, corresponding to muptial pad, was noticed

Distal part of thigh thek, tbio-tarsal articulaton slightly apart when legs folded at right angle to body axis, femur length larger than tubal length, the latter larger than foot length (FEL 156 , TIL 14.2, FOL 13.8), toe thp small, slightly pounted; subarticular tubercle small; toe lengths $\mathrm{T} 1<\mathrm{T} 2<\mathrm{T} 5<\mathrm{T} 3<\mathrm{T} 4$ (T15.1, T2 74, T310.3. T4 115, T5 10.1), web large, nearly reaching toe tup and bluntly incused (fig 4D), inner metatarsal tubercle indistinct

Dorsal surface with small tubercles: supra-tympanc fold present, but not distunct, underside smooth A parr of vocal sacs on both side of lower jaw near jan angle.

In presertatue dorsum dark brown with indistanct small patches, tregular markings on upper side of hindimb, a conspicuous whie band on posterior side of thigh, accompamed with a thon black stripe on ventro-postenor sude (fig 4CI. no mad dorsal stripe. underade mmaculate, rocal saes light gray

Fig 6 - Sound spectrogram of the advertisement call of E. nudigure sp nov, (Tlat Top window, 323 Hz bandwidth).

Color m life. Dorsum was light brown with many small darker patches (fig SA), In the night, these patches tended to fade (fig. 5B).

Varation, - Measurements for seven mate specimens are given in tab 1. None of the specinens had a mid-dorsal stripe. In external morphology, no distinct intra-specific variation Was noticed Because only male specimens were avalable, sexual variation is not known.
Advertusemen calls The adverusement calls of E mudgere recorded on 29 July 2007 at $23,2^{\circ} \mathrm{C}$ (fig 6) were trills composed of 1639 ± 277 pulses $(n=18$, range $11-22$), with total lengit of $1.31 \pm 0.22 \mathrm{~s}(0.84 \quad \mid 71 \mathrm{~s})$ Pulse repetition rate was 1171 ± 0.56 pulse/s Frequencies were rather contunuous from 1 to over 8 kHz . The dommant and fundamental frequency wds at about 15 kHz and a second harmomes band was noticed at about 3 kHz The calls recorded on 27 July 2008 at $21.0^{\circ} \mathrm{C}$ were nearly the same in number of pulses (16.36 ± 1.92 pulses, range $1220 . n=22$) but the call length was longer $(148 \pm 021 \mathrm{~s}$, range 1.05 -192 s) and the pulae repetition rate was lower (1110 ± 0.32 pulseds) than 1 he calls recorded 119007 The differences between the two recordings in call leng1h did pulse repetition rate were slight, but statistually signtieant (t -2428 and $P=0020$ for call length, $t-4.317$ and $P=00001$ for pulse repetition rate). Because the call length became shorter and pulse repetiton rate became highter with increasing temperature (ceg KL Ramoto \& Joshr, 2006). these maly be due to the slight difference in ar temperature at the t.me of recordings.

The advertsement calli of E stumophinetrs and E. hevadtenh has were analyzed by Koramoto \& Joshix an press \} The calts of E imtugese differed from the colls of E crawophath which were not the taills bat typiealls composed of at semen of two-pulse
 daration 0025 ± 007 s) Tewer in pulse number $150=1[81$ and hoger in dommant frequency ($229-2.43 \mathrm{kHz}$).
 thlickenamos

（tars．atemed	－．anc．．．		＊Anaintere		5				F Itruderitas		
	mbict ax		kilyt ？		Fermike th				teresle$\psi=0$	Mrie If	
	$x+3$	Win－war	x＊）	Inen mat	IVI	man mar	$x \rightarrow 1$	ant．wrir		4） 1	هकी4．
Sus	$32.8 \mathrm{n}=5.5$	118 49：	112 ± 335	［21．34	4.30150 m	［0．0．0 P 30．9	3510 ± 343	30y 3F1	2x5		5n．11 $=43$ T
12	16.85 ± 0.108	97．7．119	$959+1.77$	75 1．2	13.05×2	10．a fil 1	$188 * 113$	＋6． 621	2＊5	这 4 ＊ 284	$151=24$
13\％	$123 \mathrm{~A}=100$	（08．$=16.3$	$112-0.85$	103．122	14.23 .28	11220	$1200+130$	ki\％3／k	311	$2230+122$	2ita $2-4$.
$5-4$	$100+336$	19 181	14.700 .91	15 33	3 4，cust	$20 \quad 42$	$243+36$.	1983	57	4．36＋0．4	4.8 （0）
4 N	104，+ a 30	20811	214.0200	15 25	$245+1049$	17.88	$2.18+0 \geq 2$	11.27	35	125 +0.1 ．	3.11 .4
NE	2.64 ＋ 0.77	19.31	$249-0.94$	1642	$345=008$	23.50	245 ± 073	1\％ 183	［15	F－6，0，4？	$5.1-6.3$
E．		20 5，	＋1．86＝0新	z5＊0	$5.54=0$ H5	24.64	4.65×0.58	19．5．0	77		6×3－ 3.2
15	$15+078$	12.38	10040.25	1210	$\mid \mathrm{Ry}=0.45$	1.26	$760 \cdot 2 * 4$	$10 \quad 12$	3.4	$2 \mathrm{~s}+0 .+1$	478
	250 ± 079	10， 13	21,0074	14.25	$2.60=0.65$	20.41	350 ± 54	（1） 38	4π	259 ± 0.4	4 1
0	145．050	26.43	$3.8=0.89$	14.48	4．b5 2 － 0.82	3759	＋19．5074	2］4\％	0 O	$6.38=0 . t j$	49 2
1AL	4．092．5\％	63. P． 4	$0 y^{2}=124$	36.95		＊＊	$548+069$	70 0．t	1.46	$24\{2+113$	173
F	$4 \times 2+100$	12． 3.4	4.8 .51 .4 .87	3861	$8.26=61$	64119	65 ± 089	\＄5 \％	13.6		8.211 .6
F 2	$4,42+0.57$	3550	$780+1058$	x 45	$68=7$	48	$\cdots \mathrm{CH}+15$	51．75	150		उH 9 4
F．		14． 37	570×048	4580	$771=14$	600． 50.1	407 ： 076	80．7．70	171	I 1 7 7×103	00．713）
F1	$1 \mathrm{l}=3$	$+3 x$	4 128	${ }_{5}+$	s＇${ }^{\text {ck }}$	4.30	45×1	－4 ${ }^{4}$	－	48：t	＊
116L	3785＝300	47．OHT	$4200=4.50$	124 4 3：\％			侍 m	44．）97a	380		烄 4.08 .0
FEL	16． $24+14$	44＊．1＊＊	15．00＋02	138－113		16． 250	$18 \%+\pi 5$	My iss	स2y	15064 1．44	23．0 12－
1	A the	1 ＋	－ 313	$\rightarrow 110$	$\because \omega \sim 0$	＋．4． 71	＊x．＇R	6×8	$\mathrm{c}^{2 \times 12}$	0．as a	71
Mr	$: 8.24 \pm 143$	1 cos 204	4 4，4，㫨	155 161		924216	$152 x+694$	150 T9	414	－ $\mathrm{m}=1$ ．	I6N is
1	$5 \cdot 4 \% 0 * 5$	$5.18 . \%$	$33-090$	4471	$7 \operatorname{sif}_{5}=\mathrm{Mt}$	408109	$8.71 \pm 4{ }^{5}$	$34 \quad \mathrm{H7}$	13 x	$1{ }^{1} 1: H$	4.44
1．）	$\checkmark 81 \div \cdots$	$5 \mathrm{P}^{\circ}$		c．y^{2}	C． $4=0$ O	74 \％	bin．mor	－$\%$	14	12\％（w）	71
r	47	$8 \quad 14$	72．43）	4.4	1－3成	，	－ 4	（14） c_{15}	75	F 20	H6 ${ }^{1}$
TH	1 $1.05-127$		1 k	T0E． $\mathrm{Ha}_{2} 7$		17 210	$1203+190$	128－3b9	300	bith ck	ne 1
T5	$1230+121$	ms． 115	100	$0112 ?$	14 $4 \times 2 \mathrm{sk}$	102． 129	$12501+3$	111.130	307	14 － 13	1 V

Ecology．Males were calling while floating among rice plants（fig 5B）．The calling males were observed in the middle portion of paddy fields without exception On the banks of the same paddy fields．Fejervarya gramona Kuramoto et al．， 2007 and F caperata were actively calling We could not collect females in paddy fields where males were calling
Drstubution．Presently known only from the type locality，Mudigere
Eismology．Specific name was derned from the name of type localsty，Mudigere．It is an mvarable name in apposition to the generse name．
DNA sexptence data for holorype Accesston numbers are AB377110 and AB377109 for mitochondrial 12 S and 16 S rRNA genes，respectwely（07－21 in fig．I）．

MORPHOLOGICAL COMPARISONS between El phlyctis taxa from Karnataka

As shown 11 tab．1．Euphinchs alon sh and E muligene are distinetly smaller thath E he vaduct hes Ranges of SVL of E alo su females and E mudigere males do not overlap w．th those of E heradurfifus．The snout－vent length of E alorsh females is significantly smatler than that of E cromoph h tri fernalev $\left(U^{\prime}-107, P-0035\right.$ ），whereas no signuficant ditference was obtamed between males of E mudisere and E chatophiche（ $X-5, P-0089$ ） Farly distunct large dark blotches on the dorsum of lemale E alon wh were not observed an

Fig 7. Posteriorside of thigh and foot of E cyanphits tir (RBRL 0507092I. of from Mudugere) (A. B) and those of E. hexadactyhus (RBRL 06071903 , ô from Adyar) (C, D)

E he valdetyius and E cwophlycis Vomertne teeth of E hexaducty/us are distinct, formmng two highly elevated oblique lines between choanae In E cvanophlicits, subarticular tubercles dre distinct in contrast to the indistunct tubercles of E alousuand E mudugere The mid-dorsal stripe is absent in E. mudigere and E cyanophlycts

As a whole. E alorsin and E mudrgere resemble E heradat ty his and E (yumophive 1 s. respectucly However, large dark brown markings like those on the dorsum of E aloy where never observed in E hevaduchlus or any other Euphin chs spectes. These markings were very conspicuous in specimens which died accidentally dung transportation (RBRL 04070601, 04070602) The stripe pattern on the postertor stde of the thagh of E he waducryfus differs from that of E dfonser consisting of two thonner white stripes and a much thicker black strope between the two white stripes (fig 7C) The web of E heruden $H_{\text {lers is sharply incised as in } K}$ wousu (fig 7D) The thigh stripe pattern of E mulugere is smalar to that of E cramophive ins (lig 7A), and the web is not deeply jnorsed in both species (fig. 7B). The dorsal surface is densely covered with small granular tubereles in E in amphliwits, whereas the granules are rather scarce in E. Mudtgere
 canomeal discommant analy sis using medsurements flig 8A). The atatistics for diseriminamt

Iab．e 2 Statistics obtamed from the discrmmant ana．yses us．tig measurements of five Fuphluetre spectes．
 mudigere

${ }^{\text {Prectes compared }}$	Nu＇mber of varables	Eigenvaruc			Wriks＊lambota（P）			Discrimanant result（\％）	Figure
		Funcuon I	F anction 2	I unction 3	Functuen ！ （or $1-2,1-3$ ）	$\begin{aligned} & \text { Funcuoo } 2 \\ & \text { (or } 2-3) \end{aligned}$	Fumction 3		
sio，cya，het	24	17277	6.448	－	$00017 \times 0001)$	$0.34(\leqslant 0001)$	－	100	8 A
mued．chat hex	24	285730	72187	－	$0000(<0001)$	$0076(0.004)$	－	100	88
aim．Pitred	24	54.045	－	－	00，8（＜0001）	－	－	10%	98
alo，murd，cra，hes	24	$140: 3$	5147	1.8 .83	0.004 （＜0．0013	$0056(<000)$	0346 （0004）	100	93
ehr．crea，bex	18	23.108	5187	－	$0.007(\leqslant 0001)$	0.162 （0．0．54）	\cdots	100	10A
ehr，Cras，hes	14	15.105	3115	\checkmark	$004(-0001)$	0232 （0005）	－	100	IUB

	A catren	1728	1．uasititar？	\％ 4								
	－	Trimi Patci	1.	wime－ Ch 4		1 A		Primit meth		1 +1	4 CoF	دH0 5
1． 3 \％	$0.384=0003$	0253：0313 1	$03 \mathrm{n}=0.60 .4$	m， g （2）$=0.14 \mathrm{k}$	I	$0.3 .5=0.02$		02248030310		0 发 +0.090 ｜	0.367	0） 3×4
1193\％．	f ，if ，y ${ }^{\text {c }}$	1 bas	15＊－EN	－271 0？		FH		t．it．4．			13 H	1）\times
人．$\times 131$	4 41－t3．0\％	4－31 4 － 4	1，24	－ 124 t 4		15：6		＊＊\％ F		1处	P EH	\％$\times \mathrm{kc}$
1． s S＋1．			$0.2409+0.015$	0．06）0．078	1	［0061 $\times 8.06$				4． 50 ± 0.5148	ρ（1）	nots
A． 2 大	4 －Dork	0＜S－＜ma I	Ains－ $0.0{ }^{\text {d }} 6$		1	n0．6\％+0.51		$0.056-6110$		90162＋J／904	O）M\％	Etust，
－ 1	$1 \quad 002$	0 0．63 otre	$0.127=0.0 .3$	0．0rg 6．？？	1	$0 \pm 5 \pm 0.014$		0．00\％Dasis		$0.110=9.02$	0 9\％．	6189
F $\times 1$.	4 － 4000	263x－4，065	$4.14{ }^{\top}+0.062$	$0.037-0.053$	1	0．045＋6．015		3034．4113		$0.035=8.105$	Ukul	（1） 41
1－1 4151	4 ath 3 EF^{\prime}	$\times \mathrm{s}^{-1}$	（il）＋anta	$1 \mathrm{H} \quad 3 \mathrm{x} 9$		（1）		$14 \quad 107$		－a mo．	4.1	$21+\mathrm{M}$
Tosvt		Oftai－01i\％｜	0， 305 ± 80.036	01， 743 － 0 －32	1	（t）E3 1 0．215		WhK7 0.134			$5 \sqrt{5}$	0117
1．th，54．1	6． $231 \pm$［1035	0154 aiv｜	0．714＋ 6.041	0.155 1274	I		1	apts－b312		（1）32＝1an2	\％165．	11，252
F 3.1	C．14t $=0.32 \mathrm{c}$	¢1化－612＊ 1	a．15： $0.02+$	（4） $21-69$	1	D． $95+6008$	1	A． 51 0，780		［176 v कीt？	0.132	知：1
F2sul	0． $171 \pm$（064	$0 \text { itw } \alpha$	$0.1 \pm 1=0.017$	0.093 －18 68	1	Q $5.1110 .0: 8$		$0.20-0352$		$0149+6.514$	Q127．	0．180
$5 \geqslant+51$	＋1－उम，${ }^{\text {a }}$	の1\％काष	574＊nev		！	大 is A＊18				$\cdots \mathrm{mb}$	n97\％	7：＋27
Eiswt ।	$(6.15)+4065$	0．010 0184	0．13T－0．02］	0.1059 ＝ 010 ¢¢	，	0 较 a ever		16．14－112k			0130，	12：62
LIT	$1+8$	$\text { wi } \quad \text { in }$	\therefore vi4x	$=\quad x y$		3 यit－		3			2^{7}	10
15564			4.409 .548	（1）［63 4．618			1	H．h2x 15364				12． 6.4
T1541	6． $470=41627$	$0+0 \cdot 0 \div \mathrm{v}^{0}$	10．480＋018 $3 t$	0．as0－054h	1		1		1		（1） al $^{\text {a }}$	15dy
F）5 51	$4-+\pi^{2}=41134$	प．7vแ \｛iss	0．Hin $+0.0{ }^{\text {S }}$ ，	0125049°		$5+\infty 5=6 i+4$		$0 .+11 \cdot 01015$		$14 * 2 \pm \mu 0^{2} 2$		
$T \ll l$	6． $131+12122$	$0120-0.117$	－16\％ 4 E023	$0.137-81.301$				1017（1） 3 CK		a $560+4117$	2175	42931
厄5Vk			$0.243=0015$	0.220 0．301		$0.245=0.73$		$4.1 \%=4 t^{4}$			52\％tu．	
Task ${ }^{\text {a }}$		102 c	8．24＋ 4×10	0．204－0134		93128－6 1）${ }^{\circ}$				（1） 1141	is	
［4 57\％，	（0） 5 a a 1201	nisn otzs I	0．175 2180.07	$0 \%+8 \quad 0+11$	1	$0 .+02=0143$		11.51104^{79}	1	$11439 \times$＋1831	6）14－4	$=4 \mathrm{cch}$
＋053， 1	（ 528	$412 x-8,3+0$	［232＋A 2 ，10				\cdots	1120－ $11+26$	1	4） $2+43>1$	3 －403	， 2
11 mm ，		if 3 H IIN	\＃र39 En＊	6．34＝1 \％ 7 m			t		1	dix $=3$ isx 1	1807 ．	4
s M M－ 1	4． $2^{2 t}=6 x^{3} 36$	5．27－120	，13＋05．er	－13y 7 luer		a＋ky 0 34．	$\stackrel{+}{ }$	180＋5． 4^{*}	1	$68 \% 14+1$	$64{ }^{\circ} \mathrm{r}$	159．9．
TE5		4．a4i I own		4， $51000=01097$			！	itres． 17%	1	15－\％$=$ cin	（1）174．	『0
$\lambda 川 1=$	$1{ }^{4} 000 \pm$ it tret	1．4245．En0．4	1505 a＊3 309	158191^{7}		1米1： 0 1\％	1				1429	＂60＂
1．141－1		$0455=75$	1404＋ 15.77	$4 . x^{4} 5-1+11^{*}$		$1415 \quad 3 x x$		11588． 2 4ill	1	－neती -0.224	$1+1$	\cdots
F11？		व4＊）14\％	1754	1×1 运		1390 0\％	1	0703－ 74		1 TN －193	（1）$\times 5$	13
11.	$11972=4347 \%$	18， 1 \％		fu10－1t53		$1+56000$		19025 $0^{2}+180$		$3 \mathrm{AKP}-3.127 \%$	［104	＊ 6
1H．14	$119 \mathrm{~A}+14 \mathrm{~mL}$	U atar 12 cm	10352＋ 418 is	Hiks）－194．		14 n.	1				n¢aty	120

ig 8 Scatter plot of indisdual score of canonical discriminant function 1 (CA1) and 2 (CA2) for
 E. hexadactylus (B)
nalysis are shown in tab. 2. The standardized discriminant coefficients were large (in bsolute value) in SVL, HLL and HL for function 1 and in SVL, T4, F1 and F2 for function - In discriminant andlysis using ratios reldtuve to SVL (HL/SVL. HW/SVL, ete), the istribution pattern of mdividual scores was nearly the same as in the analysis using neasurements. Mann-Whitney U tests showed that nine and 13 body ratios diflered igmficantly $(P<001$) between E alovsu and E hewaductwhas and between E alotsu and E cyanophiscis, respectively (tab. 3-4) The head is smaller in E alorsh than in 4 heverdetcy lus, differences of both HL/SVL and HW/SVL of the two spectes beng haghly ignificant ($P<0.01$) The eyelid width is larger and the hundlumb length is smaller, both alatue to SVL, in E aloysh than m E. hecelaction $(P<001$). Euphlyoths aloyw differs gnificantly from E cromophi)chs ($P<001$), having a smaller head length, smaller eye ${ }^{1}$ dameter, tympanum diameter, femur length and tibla length, all relduve to SVL. The rato 1L/HW is significantly smaller, and FOL/FEL is significantly larger in E aforsm than in E. cyamophlyctis:
 3. diseraminant andysis (fig. 8B, tab. 2) The standardized coeflicients of desermmant anetions revealed that HW, T4, T2 and F3 contubuted more to funetion I and T4, TIL nd FOL contributed more to functwn 2 wath the other measurements. Only two and me body ratos were simuficantly different $P<001$) between E mudigere and E (wa-

 $P<0.01$). and $\mathrm{N}-\mathrm{N} / \mathrm{SVL}$ was sigmticantly larger in E nuthgere thatn in E heverfde flifs
 5. hevarlactrilus
 Labdardized coeffiements of the diserimanant funct.on were large (in absolute talue) in N-E, 14. FI and SVL Mann-W hatney (tests revealed that the ratios JW/SVL, F EL/SVL and TIL/
 E. mudgere than in E aloyrgi (tab 3-4).

Ratao	Cife ve unat？		Cifor	10	wata＋x Pel		faidutwe th		54．7til 35 ICT		racest lict	
	4	\boldsymbol{P}	U	p	U	p	0	0	4	F＇	U	μ
HLsyb	69	0.478	88	$1000{ }^{*}$	6	$0.001 *$	52	C． 502	7	0046 ＊	． 9	UANA＊
HWrSVL	23	6．504－4	158	6．087	18	$0.005 * 4$	37	6088	20	0.885	32	O 1，${ }^{\text {a }}$
S－NiSVL	55	1．159	106	0.071 ＊＊	19	00068	62	0.345	20	D 886	37	$0^{0} 205$
7）ly＇stm	69	02 e	148	（1） 10	9	0． 31270	74	（1） 161°	12	$0.50]^{* *}$	27	切 $431 *$
N．ESVL	81	0887	103	$00012 *$	4	0.000 ＊＊	15	0.506	12	0199	43	3） $\mathrm{H} \times 5$
ED．SVL	30	$0011 *$	33	0.000%	37	0.070	06	10．977	11	0．153	20	介019＊
E－F＇SYL	52	0,31	227	8.090	34	6．049 ${ }^{\circ}$	53	0.935	45	0.1180	20	00^{75}
CLW SVL	79	0.813	173.5	0.183	14	0．003＂$=$	47	0.312	7	9．846	27	（1）056
TDS4L	63	0321	54	18000 ${ }^{-1}$	64	0.534	39	0112	19	0.775	37	9．116＊
HALSVL	67	4.422	100	0 U122＊＊	45	0.178	34	0．035＊	21	I $000{ }^{-1}$	5	3 1 ml ＊＊
FISVL	70	$0 \leq 08$	32	$8.800{ }^{\text {¢ }}$	52	0300	11	$0001=1$	19	8775	＊	$7^{2} \mathrm{MO}^{-17}$
F2／3vt	13	（1，60才	37	0.6 （tic）${ }^{+4}$	20	$0.007 *$	16	$0.074=$	7	0．1946＊	35	¢ 61
F3／3VL	\＄2	4． 31	1.15	0.104 ＊＊	43	0 13，	54	0.470	20	0．tst	43	2．7\％
14／3VL	75	0.705	｜6｜	0250	26	00175	51	0.370	9	1006	35	7］10．
PICLSVL	88	08.50	179	0030 －	14	$0303 * *$	48	0285	11	C． 153	36	\％14
FFL／SVt	9	－CeD＊＊	845	0.000 －	39	0.087	55	0.506	14	0317	44	50\％
$11.5 V L$	65	0，305	106	D， $0^{1 / 13}$＝	49	0.233	45	0.214	16	0．715	31	ก．34x
FOL＇SVL	90	0.008	197	0.448	56	0407	53	0.435	7	0．0．4b＊	33	－ 4
TISYL	73	0003	193	©． 192	31	$0034{ }^{\circ}$	44	0193	8	0．0．3	33	61^{17}
T29\％L	62	0 Jप9	224	0.922	35	0378	45	0.214	9	00\％6	43	017
TJSV1．	76	（8）205	163	0.112	41	0． 08	50	0.340	12	0.199	50	t $\times 36$
Tejsv1．	啫	0186	211	8． 578	35	0.953	41	0140	9	0.086	35	¢182
Tusw	73	0.500	177	0.212	70	0917	45	02714	18	0．06\％	49	$6+19$
H， $\mathrm{H}^{\text {dr }}$	601	6． 757	115	$0.106=0$	17	00017 －	31	0.040°	5	0022＊	39	97
SNNE	53	－143	2115	0656	63.5	0659	46	0236	12	0199	465	f． 417
TDIFD	\％ 05	［141	218	08507	675	0.685	42	0137	14	0.317	455	f 5 第
N－NEE	725	0． 187	1835	0.276	58.5	0.484	615	0 गT3	19	寿15	55.8	（ 424
FLW	725	0.567	217	0.788	715	0979	525	0.514	17	0.568	54．5	6xty
FINF？	665	0.464	16.15	0.964	50	524	51	0.170	11	0.153	24.5	¢ ¢ヵ9＊
ILL＇FFL	18	05012	154.3	0 0rry	44	（1） 47	32	014\％＊	． 0	0.116	53	
FO4，FFL	2	0.000%	49	$0580 *$	（0）	0534	34	0000	6	［1037＊	2 k	0.065

Finally，all four Euphichis spectes from Karnataka were separated by diseriminant analyss（6g 9B；tab．2）．The standardired cocficients of discrimindnt functions were large（in absolute value）in SVL，HLL．FEL and HW for furction 1，m SVL，F1，T4 and F2 for function 2，and in FOL．SVL．T5 and T4 for function 3．Although the plot range of E．muchigere slightly overlapped with those of E aloysu and E cyanophlystis in fig．9B， E．mudegere was clearly separated along the thurd axis for discrumnant function 3 ，scores for function 3 beng from 2.431 to 4.263 for E mutigere，from 2931 to 1016 for E alos sh and from -2.629 to 1374 for E ，cyanophlyctis

Discussion

Many lines of evadence suggest the existence of a consderable amount of genetic disergence betucen popilations of the wide－ranging E ciomophly ctas populations．Khan （1997）described a subspeces of Σ cramophly cirs from the northwestern haghlands of Pakis－
 described from Itan by Nikol skt（1900）as a variety，as a vald subspeeses，At an el al（2008） clarfied that each of the E cumaphicma populations fiom southwestern Indat，Banghade：h and Sra Lanka constatutes distinct clusters in the phylogenetie tree constructed on the bass of mtDNA sequence datd Remarkable doousuc diflerences between southwestern and noth－

Fig. 9 Distribution of discrimitant scotes of E.aloysh and E mudgere (A) and scalter plot of mdtudual score of cenoncal discrimatiant function 1 (CA1) and 2 (CA2) for E abons, E mudrgere, E, cyanophtyotis and E. hexadiactylus (B),

Joshy, in press) may reflect genetic divergence between the two Indian populations. It seems highly probable that future studies will reveal the existence of several cryptic species allied to E. cyanophlyctis.

The type locality of E cyanophlyctis (Rana (ranophlyctis) is probably Tranquebar (Tarangambadi) in east-central Tamil Nadu, Indid (Baver, 1998) Although Tiwart ([991) regarded Kerala, most of Tamid Nadu and southwestern Karnataka as belongug to the Malabar faunal prov ince in the Ceylonese sub-region of the Oriental faunal region, thas does not mean the genetic identity of E cyanophbyths occurs there. Further molecular phylogenetic studtes are needed to clarily the relationship of E ciunophifoths from Karnataka-

The distribation range of E hevalatiohs is confined to India, Bangladesh and Sr Lanka. The type locality of this speces is south Inda (Frusi, 1985) Although E. hearadacth lus was reported to bave a whte or pale yellow venter (Dutta \& Manamindra Arachehi, 1996: Chanda. 2002. Danil 1, 2002: Daviels. 2005), all six specimens from Mangalore have a fincly mottled pattern on the venter and lower side of the thigh, wheh is never observed in E alos sh, E numfgere and E cyanophive $i s$. The rather hedwly mottled underside observed in the E he radurthas specimens exammed in this study andicates genetic difierentiation withon thas species. Thus, the taxonomic sitation of E he watacty has from Karnataka is similar to that of E. cyrnophilyciss mentioned above.
 rected by Dubots (1981) Thas spectes is relatively large in stee and has a untformly greenish dorsum (Liviton ct al , 1992: KHAN, 1997), resembling E hevedetctuhs. Botlingir 1920)
 Arabla and Yemen). and this species was clearly separated from E (lahopihk f/s ($/ 1-9$) and E he when h hias ($n-8$) both from southem India and Sri Lathad by discrminant analysus using his measurement, (fig 10A: 1ab 2) Compations for body rithos revealed that HL/SVL and F1/F2 of E ehrenhergui were greater ($P<0.01$) than those of E cronopilychis and FI/SVL. F4/SVL. TIL/SVL and TIL/FEL were larger ($P<0.01$) and F1/F2 was smaller ($P<0.01$) than those of E hexaducty'fs. These compansons give morphometric bases for the vpecific distinctness of E. ellronhergn

Fig 10 - Scatter plot of individual score of canonical d.serimmant function 1 (CA1) and 2 (CA2) tor E
 Saudi Arabld and Yemen (A) On the scatter plot for the abote ihree species (based on lower number of vartabless, the swore of E ghostu calculated from the coeflictents for the three speces is plotted (B). Data from Buulengle (1920) and Chanda (1990).

Roy \& Elepfanid (1993) revealed acoustic differences between E ehrohergn and E (unophlycus Acoustic features of E he cudact) lus were analyzed by Klramoro \& Joshy (in press), which seemed rather similar to K, whenbergh than to E (yunophlyctis The E hevertuety/us population from Bangladesh was proved to belong to a new undescribed taxon by molecular evidence (Alam et al., 2008).

Chanima (1990), in describing E ghoshi (as Runa ghoshi), suggested the close rela-
 (Peters, 1863) (as Rund corrugati) and Chry sopat sternesignata (Muriay, 1885) (as Ruma stemasignatal Each of these genera belongs in a different tribe in the subfamtly Dicroglossinae or different subfamily m the Ranidae IDLBOIS. 2005), and the phy logenetic relationshap of E ghosh must wat for future studies, Clandon (1990) gave measurements for the holotype of E ghoshi When the discimmant scores for this E ghosh specimen were calculated using the coeflisents of canonical discriminant functions for E. efirenhergii. E. cyomophicus and E hevaden entus fall data from Boull nger. 1920. as in fig 10A. excepl I 4, TIL. FOL and T5 which were laching for E ghowht, and forelmb length which was measured apparently in different ways by Bouirngir, 1920 and by Chanda, 1990), the plot was separated from the rangen of the other three species (fig 10B, tab 2) In wew of the fact that the ratoos snout-length/SVL (15.0). ED/SVL (133), and E-E/SVL (67) of E ghooh were lager and IILLSVL (1267). T3/SVL (24 2) and TD/ED (0.5) were smaller that the maximum and
 E ghonh seemed to be related rather remotely uth the other three Euphhates species The snout of E ghosit ifig. 1 m Chanda, 1990) wats round wheh is unlake the tather ponted snouts of congeners.

The genus Fuphiticta hav many taxonome problems to be solved as mentoned above, and fulure studes maly reved several new erypte speeses do in "Fegeraria innorhatrs". wheh was once considered to have an extensme dosibution range and recently wels split mo
 2007).

Acknowledgements

Abstract

We thank Rev Fr Swebert D'Silwa, the Pruncipal of St Aloysus College, and Rev Fr Leo D'Souza for support and factities to carry out the research, and I. D'Somza and K G Yogish for ad mo the field SHJ thanks Jestut Edwcational Society for the support, and Melwy Sequesra and \$anthosh Wilson for and in the laboratory

Literature cited

Alam, M. S. Igaua, I. Khan, M M R , Isiam, M M. Kiramoto, M, Matsh, M., Kurabayasht, A \& Si silda, M, 2008 Genetic divergenecs and evolutionary relationships in six speues of genesa Froplobutrachs and Eaplacts (Amphibaa Anura) from Bangladesh and oher Actan countres reveaied by mitochondrial gene sequences Moke Philogenct Eud, 48 515-527
Bater. A M, 1998 South Auatn herpetologeal specunens of historteal note on the Zoologral Museum, Berlin. Hamadryad, 23 (2): 133-149
Bist, S. D. 2001 A synopsis of the frog fama of the Western Ghats, In Jed Oxi Put ISCB. 1 1-34.
 with the Seychelles. Nuare, 425. 711-714
 Western Ghats of India Copera, 2005 (1): 29-37
-. 2006. - Two new species of Pholousus (Anura, Ranidae, Rhacoplomnac) from the Western Ghats, Indra Ansphhia-Reptilla, 27 (1) 1-9
 mght frog Nicributathes mamms sp now (Anurd Nyctibatrachodde) the smadient frog from Indud Curr, Sci, 93 (6): 854-858
 London, Taylor and Francis: i-xvit +1.541
--- 1920 A monograth of South Astan, Papsan, Molmeswh and Austrahtan frogs of the genus Remar Rec and Mus.. 20. 1-226
 prylogenetuc analysis. Molec: Biol Evol, 17; 540-552
Chavida. S K 1940 A new frog of the gemus Rima (Randae Anura) from Marnpar, northeaslern Indea. Hannedrwor, 15(1): 16-17.
-...- 2002. - Hund book - Lhdichn comphthuns Kolkata, ZSI: 1-vi1 + 1-335
 1.238

Dinuls. R J. R., 2005 Amphifiohs of jemusular Indu. Hyderabad, Universues Press (Indid) Provate Lld.' 1-xui + 1-268, 56 p]

 (n s.). 15 (suppl) 223284
 (10): 305-322

 from senth-western Ladia Ahte, 19 (2-4) 53-79

Dutta, S K , 1997. Amphubianr of Indur and Sri Laitka (Checkhs and boblograply, Bhubancshwar, Odyssay Publishung House: $1-\mathrm{x} 111+1-342$.
Dutta, S K \& Manamendra-Aracheht, K, 1996 - The amphibtan fuuna of Sri Lanka, Colombo, Wildlife Heritage Trust of Sra Lanka: 1-230
Farris, J S, Kallersiô, M, Kluge, A G. \& Bult, C , 1995 Testing sigmficance of meongruence Cladistacs. 10. 537-553.
Fei, L , Yf, C - Y Jiang, J.-P \& Xie, F, 2002 - On taxonomic stalus of Ruhat hmmochans group with revision of nomenclature of the rice frog from China Herp. sm, $988-96$ [In Chinese]
Fouguet, A., Vences, M , Saldlcti, M D , Mfyfr, A , Martr, C, Blanc, M \& Gllles, A., 2007 Revealing cryptic diversity asing molecular phy.ogeneties and phylogeography in frogs of the Scmar ridber and Rhnella margarnffern species groups. Moles Phylogenet Evol, 43 567-582
Frost, D R (ed), 1985 Ampfubtan spectes of the wurd Lawrence, Allen Press \& Ass. Syst Coll. [$1-\mathrm{k}$] $+i-v+1-732$
 1799) from Balochistan, Pakıstan, Pakıstan J. Zool, 29 (2): 107-112

Kt.rabarasht. A. Kl ramoto. M. Jositr, H. \& Sumida M, 2005 Molecular phylogeny of the ranid frogs from southwest India based on the mitochondral ribosomal RNA gene sequences. Zool Scl. 22: 525-534
Kıramoto, M \& Joshy. S. H. 2003 Two new spuenes of the genus Philaidzis (Anura Rhacophoridae) from the Western Ghats, sonthwestern India Curr. Herp., 22 (2): 51-60.
---- 2006 - Morphologital and acoustic comparisons of Microhyla onata M fisstper, and M okma rensis (Anura' Microhylidae) Curr. Herp, 25 (1) 15-27.
----- in press. - Advertisement call of Indian and Sri Lankan frogs. J Bombar nat Hot Soc
Kuramuto, M, Joshy, S H, Klrabayasil, A \& Slmida, M, 2007 The genas Fejervarye (Anura Ranidae) in central Western Ghats, India, whth descriptions of four now cryptic spentes, Cur Herp., 26 (2): 81-105.
Lititon, A F, Andfrton, S C. Aulle, K \& Minion, S. A, 1992 Hetidbook ro Mudide East amphubeans and reptiles, Oxford, Ohıo Soc. Stud. Amph. Rept :1-vil + 1-252
LtL Z Q, Wang, Y Q \& Sc. B, 2005 . The mutochondrial genome orgamzation of the fice frog. Fegervaya limancharsis (Amphbia Anura) a new gene order in the vericbrate miDNA. Gene, 346 |45-151.
 southern Ryukyus, Japan (Amphbıa: Randae). Curr. Herp, 26 (2): 65-79
Nikolski, A M, 1900 Reptiles, amphibans and fishes collected on the voyage of Mr N A Zaroundny to Persat in 1898 Amnatre Mus Si Petersh, 4406 [In Russian, not seen, quoted after Du tira. 1997
Poisada, D. \& Crandall, K. A., 1998. Modetest testing the model of DNA substitumon Bromformattes. $14817-818$
Ronquist, F. \& Hualsf nbick, J P, 2003. - Mi Bayes 3; Bayesan phylogenetic inference under mixed models. Bionformattes, 19 1572-1574
Roy, D \& Etepfandt, A., 1993 - Bioacoustic analysis of frog calls from northeast India. J. Brosce., 18 (3): 383-393
 Sunderland, MA. Sinauer
 Publishers $\mathrm{i}-\mathrm{m}+1$ 1-187.
Thombson.J D. Girson. T J. PLIHyiak. F. Jianmougina, F \& Higulns, D G. 1997 The ClastalX umiows anterfece liexible strakeges for muaple sequence alignment acted by quality allalysis cools. Nukter Aud Res , 24-4876-4882
Yences. M.. Thomas, M., Van Dir Meilen, A., Chiari, Y. \& Vitizs. D R . 2005 - Compitratiye performance of the l6S rRNA gene in DNA barcoditg of amphabians. From Zool. 25

